
Opportunistic Reasoning in DL Prolog

José Oscar Olmedo-Aguirre

Electrical Engineering, Cinvestav-IPN,
Av. Instituto Politécnico Nacional 2508, 07300 Mexico City, MEXICO,

oolmedo@cinvestav.mx

Abstract. The declarative programming language DL Prolog is cur-
rently being developed for coupling deduction and interaction for multi-
agent system applications. The language design is addressed by provid-
ing a uniform programming model that combines the well-known refine-
ments of resolution, SLD-resolution, UR-resolution and positive hyper-
resolution, along with control strategies for problems dealing with state-
less and state-based descriptions. The computational model of the lan-
guage is shown to be correct with respect to resolution-based refutation.
The main contribution of this work is in introducing a computational
model that uses dynamic logic modalities in forward rules, leading to
more efficient versions with respect to the reduced number of rules re-
quired to deal with the same problem.

Keywords. Logic programming, interaction, automated theorem prov-
ing, Horn clause theories, Dynamic Logic.

1 Introduction

Dynamic acquisition of interactive knowledge is an effective approach to deal
with complex system design and development [7]. Blackboard systems [1, 2] were
among the first interactive knowledge systems that imitates the opportunistic
reasoning that arise in the brainstorming sessions of human experts while solv-
ing complex problems. Opportunistic reasoning allows to draw conclusions from
a given set of facts placed in the blackboard, by reasoning in either forward or
backward manner. The logic programming language DL Prolog [5] is being de-
veloped to combine efficiently both forms of reasoning. The computational model
comprises SLD-resolution, UR-resolution and positive hyper-resolution [8, 9], to
describe respectively stateless deduction and state-based transitions. The coor-
dination model consists of a transactional global memory of ground facts along
with a strategy for the theorem prover to control program execution by syntac-
tically guided rule selection. In addition, the set of support restriction strategy
coordinates the input and output of facts with the shared memory, maintaining
the coherence of the current state of the computing agent.

Let us briefly explore other approaches that can be compared with ours:
resolution theorem provers, constraint logic programming and coordination logic
programming. The resolution-based theorem prover OTTER [8, 9] comprises a
number of refinements of resolution along with a set of control strategies to

© E. Castillo, J.C. Chimal, A. Uriarte, L. Cabrera.

Advances in Computer Science and Engineering

Research in Computing Science 58, 2012 pp. 197–207

Paper Recived 01-10-2012 and Acepted 07-11-2012

prune the explosive generation of intermediate clauses. However, OTTER does
not account for interaction. The set of all instantaneous descriptions essentially
corresponds to the set of support strategy. In OTTER, a clause is selected and
removed from the set of support to produce a new set of clauses deduced from the
axioms of the theory. Then, after simplifying a new clause by demodulation and
possibly discarding it by either weighting, backward or forward subsumption,
the new clause is placed back to the set of support.

Concurrent Constraint Programming (CCP) [6] proposes a programming
model centered on the notion of constraint store that is accessed through the
basic operations ’blocking ask’ and ’atomic tell’. Blocking ask(c) corresponds to
the logical entailment of constraint c from the contents of the constraint store:
the operation blocks if there is not an enough strong valuation to decide on c. In
this respect, the blocking mechanism is similar to the one used in DL Prolog to
obtain the set of ground facts that match with the left-hand side of some rule.
Besides, the constraint store shares some similarities with the global memory of
ground facts. However, operation tell(c) is more restrictive than placing ground
atoms in the global memory because constraint c must be logically consistent
with the constraint store.

Extended Shared Prolog (ESP) [3] is a language for modeling rule-based soft-
ware processes for distributed environments. ESP is based in the PoliS coordina-
tion model that extends Linda with multiple tuple spaces. The language design
seeks for combining the PoliS mechanisms for coordinating distribution with the
logic programming Prolog. Coordination takes place in ESP through a named
multiset of passive and active tuples. They correspond to the global memory
of facts in DL Prolog, although no further distinction between passive and ac-
tive ground facts is made. ESP also extends Linda by using unification-based
communication and backtracking to control program execution.

The paper is organized as follows. First we illustrate the forward and back-
ward reasoning schemes that arise from the computational model with a pro-
gramming example. Next, the syntax and the declarative semantics of the the
DL Prolog programming language is presented. Finally, some remarks are given
to conclude.

2 A programming example

As agents perceive the surrounding environment through sensors and act upon
it through effectors, their interaction can effectively be decoupled by a shared
coordination medium consisting of a multiset of ground facts that can be imple-
mented by a blackboard system. By abstracting away interaction from deduction,
the inherently complex operational details of sensors and effectors become irrel-
evant. The behavior of each individual agent is described by a set of backward
and forward rules that describe the exchange of information through the coordi-
nation medium. As an example, consider the problem of parsing and evaluating
simple arithmetic expressions. The parser uses the context free grammar (CFG):

E → i | (E) | E + E | E × E

198 José Oscar Olmedo-Aguirre

where non-terminal E stands for a well-formed integer expression.
Table 1 shows theory Natural for the natural numbers written in DL Prolog,

closely similar to those written in pure Prolog. This theory uses backward rules
that have the general form P ⇐ P1, . . . , Pn with n ≥ 0. The logical propositions
of the theory are built upon infix predicates =, <, and ≤, whose recursive defini-
tions are given by clauses N1 to N5. Natural represents the deductive component
of the interactive parser.

theory Natural
axioms
N1 : 0 + y = y ⇐
N2 : (x+ 1) + y = (x+ y) + 1 ⇐
N3 : 0 ≤ y ⇐
N4 : (x+ 1) ≤ (y + 1) ⇐ x ≤ y
N5 : x < y ⇐ (x+ 1) ≤ y
end

Table 1. Natural numbers using backward rules.

Table 2 shows a theory written in DL Prolog for a parallel Parser that
extends Natural. This theory uses forward rules that have the general form
P1, . . . , Pn |C ⇒ [A]P with n ≥ 0. The declarative reading of the forward rule is
that, if appropriate predicates P1, . . . , Pn have been placed in the common mem-
ory and their contents satisfy the condition C, then the action (i.e. imperative
program) A is executed to obtain the values bound to the variables occurring
in the postcondition P . The rules of Parser define a bottom-up parser for sim-
ple arithmetic expressions whose syntactic entities are represented by ground
atoms. T (n, t) asserts that symbol t occurs at position n, while E(n1, n2, x),
with n1 ≤ n2, asserts that the sequence of symbols from n1 to n2 forms a
well-formed arithmetic expression whose evaluation is the integer value x. The
forward rules are remarkably similar to those given in the CFG. Table 3 shows
the forward rules P ′1 through P ′3 that respectively replace P1 through P3 from
the theory Parser to produce a sequential parsing and evaluation of the number
enclosed in brackets. The parsing goes from left to right, starting as soon as the
left-bracket ′[′ is detected and terminating after the right-bracket ′]′ is detected.
Table 4 shows the sole forward rule P ′′123 that replaces rules P1 through P3 from
the theory Parser to produce an alternative sequential parser along with its
evaluation. This version of the parser differs from the previous sequential ver-
sion in that it only uses one forward rule for the parsing of the numbers, leading
to a more efficient parsing and evaluation. In rule P ′′123, the action resembles the
usual sequential imperative program that parses and converts the sequence of
digits to a number whose value is bound to the output variable z of the postcon-
dition E(n1, n2, z). The meaning of the action connectives is explained in section
devoted to the formal description of the language.

Opportunistic Reasoning in DL Prolog 199

theory Parser
extends Natural
rules
P1 : T (n, t) | digit(x)⇒ [x := toInt(t)]N(n, n, x).
P2 : N(n1, n2, x), N(n3, n4, y)

| n1 ≤ n2, n2 = n3, n3 ≤ n4

⇒ [z := x× 10n4−n3+1 + y]N(n1, n4, z).
P3 : T (n1,

′[′), N(n2, n3, x), T (n4,
′]′)

| n1 + 1 = n2, n2 ≤ n3, n3 + 1 = n4

⇒ E(n1, n4, x).
P4 : T (n1,

′(′), E(n2, n3, x), T (n4,
′)′)

| n1 + 1 = n2, n2 ≤ n3, n3 + 1 = n4

⇒ E(n1, n4, x).
P5 : E(n1, n2, x), T (n3,

′+′), E(n4, n5, y)
| n1 ≤ n2, n2 + 1 = n3, n3 + 1 = n4, n4 ≤ n5

⇒ [z := x+ y]E(n1, n5, z).
P6 : E(n1, n2, x), T (n3,

′×′), E(n4, n5, y)
| n1 ≤ n2, n2 + 1 = n3, n3 + 1 = n4, n4 ≤ n5

⇒ [z := x× y]E(n1, n5, z).
end

Table 2. Bottom-up parallel parser for arithmetic expressions.

P ′1 : T (n, ′[′)⇒ N(n, n, 0).
P ′2 : N(n1, n2, x), T (n3, t)

| n1 ≤ n2, n2 + 1 = n3, digit(t)
⇒ [z := x× 10 + toInt(t)]N(n1, n3, z).

P ′3 : N(n1, n2, x), T (n3,
′]′)

| n1 ≤ n2, n2 + 1 = n3

⇒ E(n1, n3, x).

Table 3. Sequential parsing of numbers.

P ′′123 : T (n1,
′[′)⇒

intx, t, n :


x, n := 0, n1 + 1;(
T (n, t)?; digit(t)?;
x, n := 10× x+ toInt(t), n+ 1;

)
*;

t = ′]′?;
z, n2 := x, n


 E(n1, n2, z).

Table 4. Sequential parsing of numbers with a dynamic logic modal action.

200 José Oscar Olmedo-Aguirre

Table 5 sketches the interaction that produce both sequential parsers in the
common memory, when dealing with the input ([3141] + [79])× [2]. In the table,
the time increases downwards with each row, whereas the symbols of the input
are disposed horizontally. At the top of the table, the input consists of two rows:
the first row corresponds to the indexes of the input, starting with 0, whereas
the second row corresponds to all the symbols of the input occurring at the
corresponding position given by the index. The entire input is not available im-
mediately, but rather unpredictably and individually each symbol from another.
When a sensor detects a symbol t at position n, it asserts the ground predicate
T (n, t), as shown in the first column of the table. For example the symbols ′4′

and ′[′, at positions 4 and 14, respectively, were early detected, while the sym-
bol ′]′ at position 6 was detected soon after. When there are enough symbols
in the memory to activate a forward rule, those symbols are enclosed in a box
and the rule applied is shown in the first column of the table. For example, at
the row 8, the rules P ′1 and P ′2 are applied one after the other. However due
to there is no symbol at index position 3, the parsing stops there. The parsing
resumes immediately after the symbol ′1′ at 3 becomes available, continuing the
parsing of the entire number, from positions 1 to 6 with value 3141. The parsing
and evaluation process continues until all the symbols of the input expression
are eventually analyzed. Then an effector may inform to a client agent that the
given expression is well-formed by placing the term E(0, 16, 6440) that include
its evaluation.

3 DL Prolog formal description

An experimental system for DL Prolog has been built to evidence the viability
of the approach. The system consists of a parser with integrated type inference
to decide whether the program constructs are well-formed. The computational
model is described as a structured-operational semantics interpreter that calcu-
lates the next state of the shared memory.

Let Σ =
⋃
αΣα be a set of constructor (constant) names and let Ξ =

⋃
β Ξβ

be a set of variable names, each partitioned by the basic types bool, int, and
act, among others. The set T (Σ,Ξ) of terms with variables is the minimal set of
phrases that is closed under composition of a constructor with a (possibly empty)
previously constructed sequence of terms. The set T (Σ) = T (Σ, ∅) of ground
terms consists of the terms with no variables. Type judgments are embedded
in the grammar rules of the language to ensure that clauses and programs are
well-formed. In particular, the grammar rule shown below describes the syntactic
structure of a well-formed term Tβ of type β:

Tβ ::= xβ | cβ | cβ1···βn→β(Tβ1
, . . . , Tβn

)

The set P (Σ,Ξ) of atomic predicates with variables is the minimal set closed un-
der composition of predicate symbols with (possibly empty) sequences of terms.
The set P (Σ) = P (Σ, ∅) of ground atoms consists of all atoms with no variables.

Opportunistic Reasoning in DL Prolog 201

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

([3 1 4 1] + [7 9]) × [2]
⇒ T (4, ′4′),⇒ T (16, ′[′) 4 [
P ′
1⇒ N(16, 16, 0) [

⇒ T (6, ′]′)]
⇒ T (2, ′3′),⇒ T (10, ′7′) 3 7
⇒ T (12, ′)′))
⇒ T (10, ′9′),⇒ T (11, ′]′) 9]
⇒ T (1, ′[′) [
P ′
1⇒ N(1, 1, 0),

P ′
2⇒ N(1, 2, 3) [3

⇒ T (3, ′1′),⇒ T (13, ′×′) 1 ×
P ′
2⇒ N(1, 4, 314) [3 1 4

⇒ T (5, ′1′),⇒ T (18, ′]′) 1]
P ′
2⇒ N(1, 5, 3141) [3 1 4 1

P ′
3⇒ E(1, 6, 3141) [3 1 4 1]

⇒ T (7, ′+′),⇒ T (15, ′2′) + 2
P ′
2⇒ N(14, 15, 2) [2

P ′
3⇒ E(14, 16, 2) [2]

⇒ T (8, ′[′) [
P ′
1⇒ N(8, 8, 0) [

P ′
2⇒ N(8, 10, 79) [7 9

P ′
3⇒ E(8, 11, 79) [7 9]

P5⇒ E(1, 11, 3220) [3 1 4 1] + [7 9]

⇒ T (0, ′(′) (
P4⇒ E(0, 12, 3220) ([3 1 4 1] + [7 9])
P6⇒ E(0, 16, 6440) ([3 1 4 1] + [7 9]) × [2]

Table 5. Interactive parsing.

202 José Oscar Olmedo-Aguirre

A literal is an atom or a negated atom. A clause is a disjunction of literals. The
set of clauses with variables is denoted C(Σ,Ξ). Clauses are usually written in
implication form P ⇐ Q, where P , called the consequent, is a disjunction of
atoms and Q, called the antecedent, is a conjunction of atoms. A unit clause
contains only one literal. A positive clause contains no negated atoms, whereas
a negative clause contains no positive atoms. A Horn clause contains at most a
positive atom. A goal consists only of negative atoms that can be represented
by an implication with false as consequent. The set of goals with variables is
denoted G(Σ,Ξ).

Terms T ::= x | c | c(T1, . . . , Tn)
Predicates P ::= false | true | T1 = T2 | p(T1, . . . , Tn)
Goals G ::= P | G0 ∧G1

Horn clauses (Backward rules) B ::= P | P ⇐ G | ∀x.B
Events E ::= P | E1 , E2

Actions (Programs)

A ::= skip | fail | G? | (A) | A1;A2 | A1 ∪A2 | A* | int x1, . . . , xn : A |
x1, . . . , xn := T1, . . . , Tn

Modal actions M ::= P | [A] M | 〈A〉 M
Modal clauses (Forward rules) F ::= M | E |G⇒M | ∀x.F

The DL modal extensions require the introduction of well-formed imper-
ative programs in clauses, hereinafter called actions. The set A(Σ,Ξ) of ac-
tions with variables is the minimal set of phrases that is closed under composi-
tion of actions with action connectives. A basic action is either the null-action
(skipact), the failure (failact), or the assignment of ground terms to vari-
ables (using the binary operator :=int int→act). Action connectives are the
postfix unary operator for testing a condition (?act), the postfix unary opera-
tor for iteration (*act→act), the infix binary operators for sequential compo-
sition (;act→act), and the infix binary operator for non-deterministic choice
(∪act→act). The mixfix modal connectives of modal necessity ([]act→bool)
and possibility (〈 〉act→bool) compose actions along with their postconditions.
The following definitions provide an interpretation of the usual imperative pro-
gramming constructs in terms of DL actions:

skip ≡ true? , fail ≡ false?

if F then A fi ≡ F?;A

if F then A1 else A0 fi ≡ (F?;A1) ∪ (¬F?;A0)

while F do A od ≡ (F?;A)*;¬F?

The precedence in decreasing order among the action connectives is the fol-
lowing: test (?), iteration (*), sequence (;) and non-deterministic choice (∪).
Parenthetical expressions are allowed to modify the precedence order of the ac-
tion connectives. Variables occurring in an action A are either logical variables

Opportunistic Reasoning in DL Prolog 203

or local imperative variables. Logical variables occurring in a clause are univer-
sally quantified, whereas local variables are introduced by declaration within
an action. A declaration of local variables int x1, . . . , xn : A creates new lo-
cal imperative variables whose scope and duration are restricted to the block
A. A simple assignment x := T evaluates the term T in the current state and
the resulting constant value is assigned to x. Logical and imperative variables
are compatible in assignments of the same type, so they can appear in both
sides of the assignment. Note however that logical variables can be defined at
most once, whereas imperative variables can be redefined. A multiple assignment
x1, . . . , xn := T1, . . . , Tn evaluates all the terms at the right-hand side in the cur-
rent state and the resulting values are assigned to the corresponding variables at
the left-hand side of the assignment. Modal necessity composition [A] P means
that after executing action A, postcondition P is necessarily true.

In a signature (Σ,Ξ) with variables, a substitution is a partial function σ :
Ξ → T (Σ,Ξ), where σ(x) 6= x for any variable x ∈ Ξ. {} denotes the empty
substitution. A ground substitution is a substitution σ : Ξ → T (Σ) valued on
ground terms. For any variable x ∈ Ξ and any substitution σ, let xσ = σ(x) if
x ∈ dom(σ) and xσ = x otherwise. For any term t ∈ T (Σ,Ξ), let tσ be the term
obtained by substituting any variable x appearing in T by xσ:

x{} = x xσ =

{
x if x 6∈ dom(σ)
(xσ) if x ∈ dom(σ)

c σ = c c(T1, . . . , Tn)σ = c(T1 σ, . . . , Tn σ)
[A] p {} = [A] p [A] p σ = [σ:=;A] p

where notation [σ:=] stands for the multiple assignment x1, . . . , xn := T1, . . . , Tn
given the substitution σ = {x1 7→ T1, . . . , xn 7→ Tn}, for 1 ≤ n. Thus the
substitution for a modal action A is defined as the initial value that the variables
take before the action starts its execution. The composition of two substitutions
σ0, σ1 ∈ Ξ → T (Σ,Ξ), written σ0 · σ1, is defined as

σ0 · σ1 : x 7→

 (xσ0)σ1 if xσ1 6∈ dom(σ1)
xσ1 if x ∈ dom(σ1)− dom(σ0)
failure otherwise

Besides the natural extension to terms T (Σ,Ξ) → T (Σ,Ξ), substitutions are
also extended to predicates, goals, and both backward and forward rules.

3.1 Computational model

The backward computation relation / ⊂ G(Σ,Ξ) × (Ξ → T (Σ,Ξ)) consists
of pairs relating goals and substitutions, where the substitutions are defined
upon the variables occurring in a renamed variant of the rule. An instantaneous
description I ⊂ P (Σ)× (Ξ → T (Σ)) relates ground predicates and ground sub-
stitutions, describing a portion of the current state of the shared memory. The
substitutions keep a track of the bindings for all the variables that occurred in

204 José Oscar Olmedo-Aguirre

the renamed variant of each forward rule applied. The forward computation rela-
tion . ⊂ P(I)×P(I) relates pairs of instantaneous descriptions. The transition
relations are defined in Table 6.

Backward computation

P ′ ⇐ G′ ∈ B(Σ,Ξ)
Pσ′ = P ′σ′

({P} ∪G, σ) / (G′σ′ ∪Gσ′, σσ′)

Forward computation

E1, . . . , En | G⇒ [A]P ∈ F (Σ,Ξ)
Eiσi = Piσi, i ∈ 1, ..., n
(G, σ1 · · ·σn) /∗ ({}, σ)

{(P1, σ1), . . . , (Pn, σn)} ∪ I . {(P1, σ1), . . . , (Pn, σn), ([σ:=;A]P, σσ′)} ∪ I

Table 6. Operational semantics of backward and forward computation.

The backward computation rule describes a refutation step from ({P}∪G, σ)
to (G′σ′∪Gσ′, σσ′) by replacing the head Pσ′ with the body G′σ′ of the instance
of the backward rule P ⇐ G′ under a suitable substitution σ′ such that Pσ′ =
P ′σ′. The new goal is an instance under σ′ of the body G′ and the remaining
goal G, along with the new answer substitution obtained from the composition
of σ′ with the previous one σ. In case that the application of the rule leads to a
failure, another backward rule if any is selected and applied after backtracking
to the previous goal and the previous substitution; otherwise, if no more rules
can be selected, the backward computation terminates in failure.

The forward computation rule E1, . . . , En | G ⇒ [A]P , with n > 0, can
be selected for deducing the ground predicate Pσσ′ only if the following three
conditions hold: (i) there are n ground predicates P1, . . . , Pn already asserted in
the working memory, (ii) there are n ground substitutions σ1, . . . , σn that makes
syntactically identical the corresponding instances of each event Ei with an
appropriate predicate Pi, i.e. equation Eiσi = Piσi holds for 1 ≤ i ≤ n, and (iii)
the composition σ1 · · ·σn of the n substitutions satisfies the goal G. Whenever
these conditions are met, the forward rule can be applied. In the rule, because
the variables occurring in any event Ei does not occur in any other Ej (i 6= j),
the composition of their corresponding ground substitutions simply consists of
the union of all of them. The ground substitution σ produced by the backward
computation rule may extend the composition σ1 · · ·σn with bindings for the new
variables that G may introduce. Hence, the equation Eiσ = Piσ also hold for σ
with 1 ≤ i ≤ n. The instance under σ of the modal action [A]P is then executed
following the standard interpretation of the action connectives [4]. Assuming that
A terminates with the initial values given by σ, the postcondition P becomes

Opportunistic Reasoning in DL Prolog 205

satisfied by the substitution σσ′, i.e. by the values computed by A assigned to
the output variables occurring in σ′. The truth of the ground predicate Pσσ′

leads to the instantaneous description (P, σσ′). However, if the guard Gσ fails,
another set of predicates asserted in the shared memory must be considered.
If no more possible selections of predicates were possible for the forward rule,
another rule is selected if any. If no more forward rules were applicable, the agent
would appear as non-responsive until another predicate assertion were eventually
produced in the shared memory.

The correctness of the computational model can be stated as follows:

Proposition 1 (Correctness).

{(P1, σ), . . . , (Pn, σ)}.{(P1, σ), . . . , (Pn, σ), (P, σσ′)} implies P1σ∧. . .∧Pnσ ⇒ Pσσ′

Note that a predicate asserted by the forward rule monotonically increases
the content of the shared memory as the events are never retracted by the rule.

4 Conclusions

The problem of coupling interaction in a resolution theorem prover with syn-
tactically guided selection of the control strategy to be used has been presented
in this paper. The experimental programming language DL Prolog has been
designed to deal with state-based descriptions using forward rules and state-
less deduction using backward rules. The programming model allows to combine
backward and forward rule chaining in a simple and more efficient manner.

References

1. D. D. Corkill Collaborating Software: Blackboard and Multi-Agent Systems and the
Future. In Proceedings of the International Lisp Conference, New York, New York,
Oct, 2003.

2. D. D. Corkill GBBopen Tutorial. The GBBopen Project, March 2011. online:
http://gbbopen.org/hypertutorial/index.html

3. P. Ciancarini Coordinating Rule-Based Software Processes with ESP, ACM Trans.
on Software Engineering and Methodology, 2(3):203-227, July, 1993.

4. D. Harel, J. Tiuryn, and D. Kozen Dynamic Logic. Cambridge, MA, USA: MIT
Press, 2000.

5. J. O. Olmedo-Aguirre and G. Morales-Luna. A Dynamic Logic-based Modal Prolog.
In Proceedings MICAI 2012, San Luis Potosi, Mex́ico, Oct, 2012.[To appear]

6. V.A. Saraswat Concurrent Constraint Programming. Records of 17th ACM Sympo-
sium on Principles of Programming Languages, 232-245. San Franciso, CA. 1990.

7. P. Wegner, Interactive Software Technology, CRC Handbook of Computer Science
and Engineering, May 1996.

8. L. Wos, R. Overbeek, E. Lusk and J. Boyle, Automated Reasoning. Introduction and
Applications, McGraw-Hill, Inc., 1992.

9. L. Wos and G. Pieper, A Fascinating Country in the World of Computing: Your
Guide to Automated Reasoning, World Scientific Publishing Co., 1999.

206 José Oscar Olmedo-Aguirre

